Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 1234-1244, 2013.
Article in Chinese | WPRIM | ID: wpr-242486

ABSTRACT

We studied the mutation effect of subsites -3(Lys47), -7(146-152), and cyclization center (Tyr195) in active domain on product specificity of alpha-cyclodextrin glucanotransferase (alpha-CGTase) from Paenibacillus macerans sp. 602-1. The Lys47 was replaced by Thr47 and Tyr195 by Ile195, and the amino acids from 146 to 152 were replaced by Ile (named as delta6). All these mutant alpha-CGTases were actively expressed in E. coli BL21. Compared with the wild-type alpha-CGTase, the starch-degrading activities of all the mutant enzymes were declined. For mutant Y195I, the percentage of alpha-CD was decreased from 68% to 30%, and beta-CD was raised from 22.2% to 33.3%. Interestingly, gamma-CD was increased from 8.9% to 36.7% and became the main product, while the actual yield was increased from 0.4 g/L to 1.1 g/L. Mutant K47T and delta6 still produced alpha-CD as main product though the percentage of beta- and gamma-CD increased. Purified Y195I CGTase showed similar optimum temperature with the wild-type alpha-CGTase, but its optimum pH shifted from 5.0 to 6.0 with better pH stability. In summary, mutant Y195I CGTase has the potential to produce gamma-CD as the main product.


Subject(s)
Escherichia coli , Genetics , Metabolism , Glucosyltransferases , Genetics , Metabolism , Mutant Proteins , Genetics , Metabolism , Mutation , Paenibacillus , Recombinant Proteins , Genetics , gamma-Cyclodextrins , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL